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U.S. ARMY MATERIALS RESEARCH AGENCY

THE EFFECTS OF GRANULARITY ON THE DIFFRACTED
INTENSITY IN POWDERS

ABSTRACT

The particle size, shape and the geometry of packing may affect the
diffracted intensity in a powder. Previous considerations of the statis-
tical aspects of the problem have yielded somewhat confiicting results.

The present treatment contributes toward resolving these results by pro-
viding a simplified but still exact formulation of the expression for the
intensity., It is shown that in addition to the usual expression for the
intensity associated with an infinite homogeneous solid there is a correc-
tive term. This term depends in detail on the correlations between a ray’'s
absorbing path in and out of the powder. The correction term vanishes when
there are no correlations between these paths. As an example of the effect
of correlations, we have obtained the correction term for a simple model of
a powder which should be a good approximation in the limit of small porosity.
The correction is found to go to zero in the limit of normal incidence in
accord with the rigorous results.
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INTRODUCT1ON

Various attempts have been made to solve for the effects of particle
size, shape and the geometry of packing on the diffracted intensity in a
powder. These attempts have yielded differing results for the reflected
intensity. Brindley (1945) found an expression for the correction factor
which in the absence of extinction effects would reduce to zero in the case
of a one component powder. de Wolff (1947) later gave an elaborate statis-
tical formulation of the problem and pointed out that Brindley’s method of
averaging was subject to some criticism. de Wolff emphasized that the
distribution of absorbing paths between the surface and the point of re-
flection must be described by a probability distribution which is conditional
upon there being a particle at the point of reflection. de Wolff's formu-
lation was mainly directed at the transmission problem previously considered
by Schafer (1933) for a simpler geometry and where one dimensional consideia-
tions are sufficient. His treatment of the reflection problem was less
rigorous. Wilchinsky (1951) gave a treatment of the reflection problem
based on a simple geometric model of a powder, without attempting a rigorous

statistical treatment.

.In the present paper, we consider the problem of reflection from an
infinitely thick porous sample. We neglect all extinction effects. We
assume diffraction from a sample with plane surface, with angles of inci-
dence and reflection equal, and assume the beam wide enough and the sample
statistically homogenevus so that results do not depend upon just what
portion of the surface of the sample the beam strikes. We neglect beam

spreading effects introduced by the diffraction at various depths.

We first derive a simple but general expression for the reflected
intensity which exhibits directly the salient features of the problem.
We are able to separate the expression into two terms: a term which gives

rise to the usual bulk infinite solid absorption factor and an additional
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term which gives the correction to this term. After discussing some general
features of the corrective term, we examine this term for a model which has

validity in the limiting case of small porosity.

FORMAL SOLUTION

We consider the case of a porous solid with an impinging beam whose
area is wide enough so that its average intensity is equal to the statistical
average of the intensity of an infinitesimally narrow beam. In this way we
replace statistical averaging by an average over the area of the surface hit

by the beam.

Before going into the detailed formulation, it is of value to discuss
the problem in terms of a naive model which leads one to expect an infinite
powder might act like an infinite homogeneous solid. For a homogeneous, the
intensity of the beam is I, exp(-uL), at a depth L sin &, where L is the
distance measured along the ray from the surface to the point of reflection and & is the
angle of incidence = the angle of reflection. If p is the linear absorption
coefficient for the solid, the contribution to the intensity of the emerging
beam per increment of path length dL is proportional to exp(-2uL) where the
paths in and out are of equal length. [Integrating over the total path from
zero %o infinity we find that the total intensity I is proportional to
1/(21). (If we had considered transmission through a solid of thickness

D sin &, the transmitted intensity would have been proportional to exp(-uD).)

If one now calls the absorbing path length L, as opposed to the geomet-
rical path length L, the absorption factor, between the point of incidence

at the surface to the point of reflection is exp(-uL,). The intensity is

proportional to the incremental length in the material dL,. Under the

assumption that the absorption path getting out is also L., the integral of the

expression exp(-2uL,) dL. from zero to infinity yields the total intensity
a a Yy

which again is proportional to 1/(2u). 1In this calculation the voids have



neither contributed to the absorption or the reflected intensity. There-
fore, the powder has been treated as a homogeneous solid and has obviously
yielded the same result as for this case. Actually the only essential .
assumption necesgary for this result is that the absorbing paths in and

out are equal. While this assumption is true for a solid and on the
average for a powder, it is not identically true for individual paths
except for normal incidence. For normal incidence the argument given is
rigorous and the result will prove to be a special case of our more general
treatment. In general it is the difference in the absorbing paths in and
out which give rise to the correction over the infinite solid contribution

and also to the difficulties in formulating the problem in general.

We denote the absorbing path lengths in and out by L, and La' respec-
tively and the coordinates of the point of reflection L. and X where L is
the geometric path length as before and X is a coordinate in the plane of
incidence, parallel to the surface (see Fig. 1). Tt is apparent that at any
given point L, X (in a given plane of incidence), the geometry of particle
distribution determines the functions La(L,X) and La'(L,X). It might be
noted that a beam reflected from L,X is incident at the surface at point
X, = X-Lcos6. Thus, for a beam incident at s;me point X, the reflected
intensity will be given by an integral over all L with X specified by

X, + Lcos8. The total intensity of the beam is obtained by integrating

over all X  within the incident beam width. As previously stated, we
assume the beam to be wide enough to give a good statistical average. For
convenience the final integrations will be performed over the variables L
and X rather than L and X,. (The Jacobian of the transformation is unity.)
Let P(L,X)dLdX be the contribution to intensity of the reflected beam
associated with the volume element dLdX, and associated with absorbing path
lengths L, (L,X) ?nd Ly'(L,X). P(L,X) will be zero for those cases where
there is no particle at (L,X) and otherwise equal to I exp[-u(L, + L")},

where I, is the normalized intensity. Thus,
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1 @ Xg + Lcosf
(XB-XA) o XA + Lcos®

I =

P(L,X)dXdL (1)

where the integration of X corresponds to the range of X, within the beanm,
defined by the limits Xa and Xg. We have included a normalization factor
1/(XB'XA)' assuming unit dimensions for the other dimension of the beam,
and with the tacit assumption that averaging over this other dimension
would not change the result because of the assumed statistical hémogeneity

of the sample. We may write
P(L,X) = I, expl-p(L, + L,")] A(L,X), 2)

where A(L,X) 1s so defined that it is unity when there is a particle at
(L,X) and zero when there is no particle there. We now show that it is

possible to give an explicit form for A(L,X).

»

The quantity (3La/3L)xo represents the change in absorption length
with geometric length, for a ray entering at a fixed point Xo- It has the
desired property of being unity if there is a particle at (L,X) and zero
if there is not. Similarly (BLa'/BL)xo' has the same property, considering
a fixed point X of emergence of the ray, where X; = X+L cosf. But
(BLa/BL)xo = (9L,/9L)x + (BLa/BXXBX/BL)XO, with (BX/aL)xo = cosf.

Similarly (3Lg'/3L)x ‘ = (3L,'/3L)x + (3L,'/3X)(3X/3L)K *, with (3K/3L)

= -cos8. We choose :o define A(L,X) as the symmetric combination,
A(L,X) = % {[a(La + La')/BL]x + cosf [B(La -La')/3X]L}. (3)

With this choice, Eq. 1 becomes



I "Il + 12. (4)

where

I, @ Xg + Lcost | B(La+La'i>
. . ] ) (Latle V) gx
I XX J,dL fo + Leosd ® (exp-p(Ly+Ly")] oL ) (5)

+

I .cosf Xp + Lcosé o(L -L_‘)
[o = =2 d B 1 . ' a” “a
2 XB'XA {3 L XA Lcos@ % Lexp #iLlatly )] ( oX )de (6)

Examining Iy we find that

I1 1 © (L +L.")
—_ B ' a ' a

. . —_— dX dL } -u{L.+L J{ —3_3 + C 1
IO XB'XA fiA jo A exp[ #( 8’ a ) aL x ( )

where C represents a beam spreading correction term. In the Appendix we
show that this term is vanishingly small in the limit that the beam is wide
compared to the average penetration depth. The integral in Eq..7 may now
be performed without making any assumptions or restrictions to particular

models for the distribution of path lengths in and out yielding the result
/T, = 1/(2u). (8)

Since we see that I; is in itself just the intensity corresponding to an
infinite, non-porous solid, I, must contain any correction arising from the
granularity. It might.be pointed out that this separation into I, and I

is not a trivial separation, in that it doesn’'t simply subtract off from

the expression for the intensity the 1/(2u) factor for the infinite solid.
Rather the nature of the separation was such as to produce the I} term whose
value could be determined independent of the distribution and correlations

of the absorbing paths in and out plus an I term which we shall subsequently
show does depend on the correlations and distribution of absorbing paths in

and out. Jt is worth emphasizing again that the formulation for I in terms of



the infinite continuous solid and a correction is exact and makes no

assumptions or restrictions on the distribution of path lengths in and out.

GRANULARITY CORRECTION TERM

General Discussion

Before attempting to evaluate Iy, it is of value to look at the various
contributions in a qualitative way. We first note that in general, the
average (over X) values of (BLa/BX)Land (aLa'/aX)[‘are zero, as we fxpect
equal positive and negative contributions. The reason tMat the integra} of
each of these terms is not zero is that the absorption coefficient gives
different weighting to the positive and negative fluctuations. If the paths
in and out are completely uncorrelated throughout, we would still expect
the two terms to be identical and hence to give zero difference. If the
paths in and out were identical, as they would be for 6 = 90°, or for a
solid with laminations parallel to the surface, I would then again be
identically zero. de Wolff (1956) has already pointed out that the granular cor-
rection vanishes at normal incidence. With horizontal laminations, the
quantities (OL,/9X); and (OL,'/0X)| will of course individually be identi-
cally zero; one may also expect that for geometries consisting of flaky
particles with planes roughly parallel to the surface, I will remain small
for angles differing appreciably from 90°. Thus, to summarize this quali-
tative discussion, a non-zero value of I, depends on having fluctuations
in density in a direction parallel to the surface. Moreover it depends on
the difference in the integral over the paths in and out of these density
fluctuations., It is worth emphasizing the fact, implicit in the deri;ation
of our equations for the intensity, that the averages that we are discussing

are over all points L,X regardless of whether there is a reflecting particle

at this point. This considerably simplifies any calculation, since one does

not have to introduce conditional probabilities for certain events depending
on whether a particle 1s there. Thus, for example, it puts voids and
particles on an equal footing in that there are changes in the path length

in and out arising both when the end point (L,X) is in a void as well as
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when it is at a particle. This will become clear in the following example

which will serve to give a quantitative estimate of the corrective term.

To facilitate examining the correction term I,, we write it in the form
®
I = I, [ dL dy(L,6) (9)
where &2 is given by

cosf Xp + Lcosf 3L) L, '
8 & — B - ' al _ a

It might be noted that the factor (XB-XA)'1 enters into the definition of

d5. Since we are only interested in Jy in the limit that this factor is
very large, then we shall regard as zero any term which vanishes in this
limit. It might first be noted that &2 is zero when the absorbing paths
in and out are completely uncorrelated. From Eq. 10, we can write &2

(uncorrelated)

) .
35 (uncorrelated) = 2(:;;-XA) J<exp(-tly' V> Jexp(-ply) dly-<exp(-ily)>fexp(-ily') diy’
0 B* Lcosb
.27 exp(-u,')> exp(-yla)-<exp('#L,)> eXP('Plﬁl
2(XB'XA) At Lcosé
=0 (11)

where in the integral over dL, we have replaced exp(-uL,’) by its average value
and exp(-uL,) by its average in the integral over dl,‘, in accord with the lack of
correlation between L, and Ly'. It should be noted that the separate terms
in Eq. 11 go to zero in the sense defined abeve. However, this result does
not obtain in general because correlations do exist between L, and L,'.

The correlations of course depend explicitly on the geometry. For a random

collection of particles or pores one would expect that the paths would be
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uncorrelated except where the paths in and out are through the same particle
or a closely correlated group of particles. It is therefore useful to con-
sider the correlation arising specifically when the incoming and the out-
going rays are associated with the same particle. For simplicity, the
particles are taken to be cubes with planes parallel to the plane of the

ray and the surface of the powder. The results, however, are not thought

to be sensitive to the geometry. In Fig. 2, we plot the sum of the incoming
and outgoing absorbing paths and the derivative of their differences as a
function of X. The only non-zero contribution to &2 will arise when for a
given L, there exists a region in X where L, and L,’ are simultaneously
passing through the particle. ‘This corresponds to the region of correlation
or overlap. It should be noted that the region of overlap is larger than
the particle depth. Fig. 3 depicts the region of overlap around such a
particle. In Fig. 2, we also give the absorbing paths for a circular
cross-section which shows qualitatively similar results. One can also see
the sign of the correction term from these figures, namely, the derivative
term is negative where the L, + L,' is smallest. Because of the negative
sign in the exponent, the negative contribution is therefore larger and

the correction is negative. The correction term has the same sign for a
pore [for now the derivative term is negative when the absorbing path is
smallest and positive when the absorbing path is largest.] In the case that
there is more than one pore or particle, it is apparent that as long as
there are no special correlations between them, and they are not within

regions of overlap, the contributions to Iy are additive,

Estimate for Dilutely Porous Solid

We have therefore considered the corrections for a solid with small
well-separated pores, such that (l-a), the fraction of space filled by
pores is small. OQur method of computing the contribution from each pore
requires that we do a rather extensive set of integrations for each angular

region of interest. as the results in the region of normal incidence are
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of particular interest, we first derive the expression for Iy valid in the

range tan8>2. For a cubic pore of dimension w at

I cost -S -C -S .
Ig(tan922) = .(EE%XZSEZQ [E-(l-e )(2-C-2e¢"™) Y4 e sinh 2C (12)
where

S = uw secf and C = uw cscé.

In this calculation, Ig is the intensity per pore taken to be located with
top at zero depth. (In the following, we will denote the position of the
pore by the location of its top surface.) We now examine the effect of
having a distribution of pores in depth. If the pore under consideration
were.the only pore in the solid, its effect at depth sinf would be reduced
by the absorption factor exp(-2uf). The effect of having intervening pores
between the surface of the solid and position of the pore is to reduce the
total absorbing path by the length of pores intercepted. We denote the
absorbing paths between the surface and the depth of the pore by ia and £a"
so that the absorption factor entering because of the finite depth of the
pore is exp(-2p(’ﬁa + {a')). In principle this factor, which is a function
of the variables L,X should be introduced into the integration over the pore
geometry to obtain the contribution to Iy of the particular pore. However,
with the assumption that there is no correlation between the position of

the pores, the fluctuations in values of 4, and £,' from their average
values sre uncorrelated with the position of the pore, and the average effect

of a pore at depth £sinf is just the result for a pore at zero depth multiplied by
<exp -“(£a + 'f,a')>Av x exp(-2ya£) [1 + %p<(2a{-£a-£a’)2>Av]

The average number of pores per unit volume is (l-a )/w3, and the total
effect is obtained by integrating over depth and the beam width (Xg-X,) for

unit transverse dimension. The resultant expression is

-11-



1 (-a) (Xg-Xy) 13
— B A (13)

2u wé cscf

The fluctuation term has been neglected since it is a factor of order uw
smaller than the term retained. Where uw is not small compared to unity a

different treatment would have to be used.

One must further add the contribution to the absorption correction
arising from pores which are intercepted by the surface and do not appear
as full pores. The number of these pores per unit area is (l-a)/w. If one
assumes that the average correction per pore of these is b Ig, then the

total absorption correction Iy is given by

- Xp-X :
Iy = d-a)( )[1 + 2ba uw csc0] Ig (14)

2ua wécsch

We have not computed the magnitude of b as a function of angle and uw for

our model but instead have taken ba to be one-half. For the region tan6>2,

and using Eqs. 12 and 14 we obtain for Ig

I,(1-a)

e [c - (1-e-5)(2-C-2¢C) - YeS sinh 20] [1+C] (15)

Iz(tan932) s -

where a is the ratio of the apparent density to the bulk density. To obtain
a semi-quantitative estimate of Io for the case C and S much less than unity,

we expand exponentials in Eq. 15 to obtain

1. (1-a) (1_2 cot@) (16)

I,(tanf>2) = - & '__'C
9(tan£>2) v 3

We are interested in seeing whether the correction goes to zero smoothly as

the angle of incidence approaches 90°. For this case, S>>uw and we return

to Eq. 15 to find
~n I
Iy = -2 (l-a) cosé. (17)
4u a

-12-



Thus, Iy does go smoothly to zero within a small angular range as 8
approaches 90° and there is no abrupt discontinuity in the correction factor,
in agreement with intuition and the fluorescence measurements of de Wolff
(1956). It should be remembered that the present calculation is for a
dilutely porous solid such that the spacing between pores is larger than

the overlap or correlation distance. This distance is angular dependent

(See Fig. 3) and in the region of 902 would be infinite if it weren’t for
the absorption which effectively limits the correlation distance to 1l/u.
Thus, the dilution requirement is likely to be violated for practical

porosities.®

We now give an expression for Iy valid in the range of smaller angles
(6<45°) in order to obtain the angular dependence of I throughout. With-
out going into any of the steps (they closely parallel those made in obtain-

ing Eq. 15), we find

I (l'a) 1 1 . .
oy . LoUl-a)[ 1 g, oc+s, Ll ¢ hs] 1) A
I,(6<45°) "o [1 g (1-e )-Ye i sin ( (18)

Expanding functions for S and C much less than unity, we find

. (19)
I5(6<45°) = Lollra) o (1-tané/3)
4ua

In the region close to grazing incidence, the bulk contribution to Eq. 19

vanishes and one is left with the surface contribution

~ I (1-a)/buw
6 T o 20
196-0) ¥ 2o -92 (20)

In Fig. 4, we have taken ba = ), on the assumption that the surface pores

contribute half the correction of full pores. In the limit of grazing

incidence, we might expect that the surface pores are as effective as the

*P. N. de WNolff has couucntsd (Private Communication) that the way in which the correc-
tion term vanishes near 90° is one of the most important problems in this field.
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bulk pores and b is close to unity. In Fig. 4 we give the plot of relative
correction 12/11 versus O computed according to the above approximation.

The central region shown as a dashed line has been obtained by interpolation.
It may be noted that for the two smaller absorptions, for which the calcula-
tions are more reliable, the correction term is small and fairly independent
of angle except quite close to & = 90°, As the angle of incidence goes to
zero, surface effects become dominant and the apparent decrease in the cor-
rection term is not to be taken seriously because of the crude approxima-

tions made in estimating this term.

CONCLUSIONS

The present exact formulation of the granularity correction has made
it possible to gain physical insight into the sources of this correction
as well as to obtain a quantitative estimate of the correction. We find
that the correlations between a ray's incoming and outgoing absorption
lengths determine the magnitude of the correction term. In the special
case where the correlated incoming and outgoing absorbing paths are identi-
cal, the correction vanishes. A zero correction also arises when there
are nc correlations, however, correlations of a more general nature will
regplt in a nén-zero correction. Correlations that‘do arise come almost
entirely from particles or pores that are at or near the geometric point
of reflection. We have estimated the magnitude of the correction term for
a single pore utilizing cubic geometry for the pore shape. We have shown
that this result can be used to obtain the correction term in a dilutely
porous material, provided that the pores are more widely separated than the
correlation or overlap distances. The neglect of extinction effects also
implies the assumption that the crystallites are randomly oriented and
small compared to any characteristic dimension involved in the description
of porosity. Although the quantitative estimate of the correction term is
given here for only a simple geometry, we think the present exact formula-

tion will serve as a good starting point when more details of the geometry
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and statistics of particle distributions are introduced. Our present re-
sult is that the relative correction is of the order (l-a)uw/a. As the
porosity increases, (l-a) would be replaced by a and the average pore size
w by the average particle size since the role of pore and particle become
interchanged as the average particle size becomes smaller than the average
pore size. It would however be surprising if more exact treatments should

yield results significantly different from our general findings.
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Fig. 1. A schematic representation of L, and L,’, the absorbing paths in
and out, respectively, for a given path length L. X, and X,' are the
points of intersection with the surface of the incoming and outgoing
rays, respectively and X is the geometric point of reflection.
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Contributions to absorption correction arise from shaded portion,

Interior unshaded regions give no correction since the two absorb-

ing paths are equal.
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cancelling contributions leaving only the diagonally shaded

regions as the overlap contribution.
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uw = 0,01-0.5 corresponding to the range of effective
particle size from fine to coarse, respectively.
The dashed line was obtained by interpolation.
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APPENDIX

Reversing the order of integration in Eq. 5 and lettiné Lg ¢+ L' =
LIL,X] leads to

IO XB (X XA)sece d af
_—0__ GBI, X N —
I = (XB'XAY&A dX L L exp{ -4E[L,X] WA

I, (X-Xp)secd ) . (_3_8_
m) J-)((I)Bf()( XB)sec¢9 dL exp{ L2lL, 5L

We can perform the integration over L, obtaining

I X X-X 6, X
h- 2;¢(xB.xA){JXA X+ f dX exp [-pL[(X-Xg) sech, X]

] f:’ dX ep {[,yg[(,x-xA) sech, x]}
A

Finally, I 1
L., C,
I, 2u
where
1

E;z;;—iza f dx’ {exp(-ﬂﬂ[X'secB, X' + XB])-exp(-ﬂﬂ[X'secB,X' + XA])}'

C will not be identically zero in general. However its expectation
value will be zero if Xg-Xp is large enough that there is no correlation
between £(L,X) and f[L,X+XB-XA]. This is usually the case, unless there
is long range order in the granure geometry. For the complete correlation
that exists for a non-porous solid, C will obviously be identically zero.

Even if correlation exists, C will at most be of order

1 1
5;- a u (Xg-Xp)secd

, where a

is the ratio of average density to that of the non-porous solid. Therefore

for wide enough beams, C can always be neglected.
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